资源类型

期刊论文 96

会议视频 4

年份

2023 12

2022 12

2021 16

2020 7

2019 7

2018 2

2017 3

2016 1

2015 1

2014 2

2013 3

2012 5

2011 3

2010 3

2009 6

2008 5

2007 4

2006 1

2005 2

展开 ︾

关键词

强化学习 3

建筑科学 2

斜拉桥 2

深度强化学习 2

钢结构 2

D区 1

FRP筋 1

H∞控制;零和动态博弈;强化学习;自适应动态规划;极小极大Q-学习;策略迭代 1

PBO纤维片材 1

一阶分析法 1

三峡电站 1

交互式分割 1

交通信号控制;交通预测;交通世界模型;强化学习 1

人—多机器人协同系统;基于零空间行为控制;任务管理器;强化学习;知识库 1

人在回路AI 1

人工智能 1

人类指导 1

体外预应力 1

全方位 1

展开 ︾

检索范围:

排序: 展示方式:

Spatial embedded reinforcement of 20-node block element for analysis PC bridges

LONG Peiheng, DU Xianting, CHEN Weizhen

《结构与土木工程前沿(英文)》 2008年 第2卷 第3期   页码 274-280 doi: 10.1007/s11709-008-0039-1

摘要: The formula for the contribution of prestressed reinforcement on embedded reinforcement element is derived according to the mechanical behavior of PC bridges and the foundational principle of finite element method. Mechanical concept is definite and examples validate the calculation results. Reinforcement element model allows generating a finite element mesh without taking into consideration the layout of reinforcements. Furthermore, the prestressing tendon may pass through the concrete elements in an arbitrary manner. It is an effective approach that the no-node loads are diverted from the tendons to the adjacent concrete elements. A useful arithmetic analysis of the spatial curved tendon PC Bridges is provided.

关键词: arithmetic analysis     calculation     prestressed reinforcement     mechanical     arbitrary    

Flexural behavior of high-strength, steel-reinforced, and prestressed concrete beams

Qing JIANG, Hanqin WANG, Xun CHONG, Yulong FENG, Xianguo YE

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 227-243 doi: 10.1007/s11709-020-0687-3

摘要: To study the flexural behavior of prestressed concrete beams with high-strength steel reinforcement and high-strength concrete and improve the crack width calculation method for flexural components with such reinforcement and concrete, 12 specimens were tested under static loading. The failure modes, flexural strength, ductility, and crack width of the specimens were analyzed. The results show that the failure mode of the test beams was similar to that of the beams with normal reinforced concrete. A brittle failure did not occur in the specimens. To further understand the working mechanism, the results of other experimental studies were collected and discussed. The results show that the normalized reinforcement ratio has a greater effect on the ductility than the concrete strength. The cracking- and peak-moment formulas in the code for the design of concrete (GB 50010-2010) applied to the beams were both found to be acceptable. However, the calculation results of the maximum crack width following GB 50010-2010 and EN 1992-1-1:2004 were considerably conservative. In the context of GB 50010-2010, a revised formula for the crack width is proposed with modifications to two major factors: the average crack spacing and an amplification coefficient of the maximum crack width to the average spacing. The mean value of the ratio of the maximum crack width among the 12 test results and the relative calculation results from the revised formula is 1.017, which is better than the calculation result from GB 50010-2010. Therefore, the new formula calculates the crack width more accurately in high-strength concrete and high-strength steel reinforcement members. Finally, finite element models were established using ADINA software and validated based on the test results. This study provides an important reference for the development of high-strength concrete and high-strength steel reinforcement structures.

关键词: high-strength steel reinforcement     high-strength concrete     flexural behavior     crack width    

Experimental research on the creep behavior and bearing capacity of repeatedly prestressed concrete beam

SHAO Xudong, LI Lifeng, YANG Jianjun

《结构与土木工程前沿(英文)》 2007年 第1卷 第3期   页码 305-311 doi: 10.1007/s11709-007-0040-0

摘要: In the prestress tensioning process of medium or short span prestressed concrete beam bridges, there are always many serious problems, such as the camber of straight beam being too large, curved beam going crosswise, and columns of rigid beam bridge cracking, that can be commonly seen because of its greater additional stress in prestressing. To solve the above problems, a new concept of repeatedly prestressed bridge structure was innovatively proposed in this work. It was proved, through theoretical and experimental comparison between this new structure and the traditional prestressed structure, that the application of repeated prestressing technology can greatly improve the mechanical and deformational performance of the low height beam during construction and long-term use. Furthermore, a kind of computational formula to calculate creep strain and deformation due to repeated prestressing in terms of time was derived in this paper and the bearing capacity of this new structure has been tested. Finally, the work concludes that there is a bright application prospect for this new structure for medium and short span prestressed beam bridges to control deformations.

关键词: computational     cracking     technology     prestressed concrete     application prospect    

Deflection behavior of a prestressed concrete beam reinforced with carbon fibers at elevated temperatures

Mohammed FARUQI, Mohammed Sheroz KHAN

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 81-91 doi: 10.1007/s11709-018-0468-4

摘要: Fiber reinforced polymer(FRP) have unique advantages like high strength to weight ratio, excellent corrosion resistance, improving deformability and cost effectiveness. These advantages have gained wide acceptance in civil engineering applications. FRP tendons for prestressing applications are emerging as one of the most promising technologies in the civil engineering industry. However, the behavior of such members under the influence of elevated temperatures is still unknown. The knowledge and application of this could lead to a cost effective and practical considerations in fire safety design. Therefore, this study examines the deflection behavior of the carbon fiber reinforced polymer(CFRP) prestressed concrete beam at elevated temperatures. In this article, an analytical model is developed which integrates the temperature dependent changes of effective modulus of FRP in predicting the deflection behavior of CFRP prestressed concrete beams within the range of practical temperatures. This model is compared with a finite element mode (FEM) of a simply supported concrete beam prestressed with CFRP subjected to practical elevated temperatures. In addition, comparison is also made with an indirect reference to the real behavior of the material. The results of the model correlated reasonably with the finite element model and the real behavior. Finally, a practical application is provided.

关键词: FRP     CFRP     concrete     elevated temperatures     deflections     prestress    

On the seismic stability analysis of reinforced rock slope and optimization of prestressed cables

Wenbo ZHENG, Xiaoying ZHUANG, Yongchang CAI

《结构与土木工程前沿(英文)》 2012年 第6卷 第2期   页码 132-146 doi: 10.1007/s11709-012-0152-z

摘要: The evaluation of the seismic stability of high rock slopes is of vital importance to ensure the safe operation of the hydropower stations. In this paper, an equivalent pseudo-static force analysis based on the finite element method is developed to evaluate the seismic stability of reinforced rock slopes where the prestressed cables are modeled by the bar elements applied with nodal forces and bounded only at the anchored parts. The method is applied to analyze a high rock slope in south-west China and the optimization of cables. The stabilization effects of prestressed cables on the seismic stability of the slope are studied, the simulations of the concrete heading are discussed and the potential failure modes of the shear concrete plug are compared. Based on this, the optimization of cables is studied including the anchor spacing and inclined angles.

关键词: high rock slope     reinforced system     optimization     prestressed cable     seismicity    

Seismic performance of fabricated continuous girder bridge with grouting sleeve-prestressed tendon composite

《结构与土木工程前沿(英文)》   页码 827-854 doi: 10.1007/s11709-023-0954-1

摘要: The seismic performance of a fully fabricated bridge is a key factor limiting its application. In this study, a fiber element model of a fabricated concrete pier with grouting sleeve-prestressed tendon composite connections was built and verified. A numerical analysis of three types of continuous girder bridges was conducted with different piers: a cast-in-place reinforced concrete pier, a grouting sleeve-fabricated pier, and a grouting sleeve-prestressed tendon composite fabricated pier. Furthermore, the seismic performance of the composite fabricated pier was investigated. The results show that the OpenSees fiber element model can successfully simulate the hysteresis behavior and failure mode of the grouted sleeve-fabricated pier. Under traditional non-near-fault ground motions, the pier top displacements of the grouting sleeve-fabricated pier and the composite fabricated pier were less than those of the cast-in-place reinforced concrete pier. The composite fabricated pier had a good self-centering capability. In addition, the plastic hinge zones of the grouting sleeve-fabricated pier and the composite fabricated pier shifted to the joint seam and upper edge of the grouting sleeve, respectively. The composite fabricated pier with optimal design parameters has good seismic performance and can be applied in high-intensity seismic areas; however, the influence of pile-soil interaction on its seismic performance should not be ignored.

关键词: seismic performance     continuous girder bridge     grouting sleeve-prestressed tendon composite connections     grouted sleeve connection     design parameters    

Experimental study on shear behavior of prestressed reactive powder concrete I-girders

Hui ZHENG, Zhi FANG, Bin CHEN

《结构与土木工程前沿(英文)》 2019年 第13卷 第3期   页码 618-627 doi: 10.1007/s11709-018-0500-8

摘要: As a new generation of concrete, RPC(Reactive Powder Concrete) has attracted great research attention for its ultra-high strength and high durability. In the present paper, experimental results from tests on eight prestressed RPC I-section girders failing in shear are reported herein. The beams with RPC of 120 MPa in compression were designed to assess the ability to carry shear stress in thin webbed prestressed beams with stirrups. The test variables were the level of prestressing, shear span-depth ratio ( / ) and stirrup ratio. Shear deformation, shear capacity and crack pattern were experimentally investigated in detail. With regard to the shear resistance of the test beams, the predictions from three standards (AFGC, JSCE and SIA) on the design of UHPC structures were compared with the experimental result suggesting that the experimental strength is almost always higher than predicted. RPC, as a new concrete, was different from normal concrete and fiber reinforced concrete. Further study should be needed to develop an analytical method and computation model for shear strength of RPC beams.

关键词: prestressed concrete     RPC(Reactive Powder Concrete)     concrete beams     shear strength     experimental study    

Calculation of prestressed anchor segment by 3D infinite element

Yanfen WANG, Hongyang XIE, Yuanhan WANG

《结构与土木工程前沿(英文)》 2009年 第3卷 第1期   页码 63-66 doi: 10.1007/s11709-009-0006-5

摘要: Based on 1D infinite element theory, the coordinate transformation and shape function of 3D point-radiation 4-node infinite elements were derived. They were coupled with 8-node finite elements to compute the compressive deformation of the prestressed anchor segment. The results indicate that when the prestressed force acts on the anchor segment, the stresses and displacements in the rock around the anchor segment are concentrated in the zone center with the anchor axis and are subjected to exponential decay. Therefore, the stresses and the displacement spindles are formed. The calculation results of the infinite element are close to the theoretical results.

关键词: infinite element     prestressed anchor     couple     finite element    

A new automatic convolutional neural network based on deep reinforcement learning for fault diagnosis

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0673-7

摘要: Convolutional neural network (CNN) has achieved remarkable applications in fault diagnosis. However, the tuning aiming at obtaining the well-trained CNN model is mainly manual search. Tuning requires considerable experiences on the knowledge on CNN training and fault diagnosis, and is always time consuming and labor intensive, making the automatic hyper parameter optimization (HPO) of CNN models essential. To solve this problem, this paper proposes a novel automatic CNN (ACNN) for fault diagnosis, which can automatically tune its three key hyper parameters, namely, learning rate, batch size, and L2-regulation. First, a new deep reinforcement learning (DRL) is developed, and it constructs an agent aiming at controlling these three hyper parameters along with the training of CNN models online. Second, a new structure of DRL is designed by combining deep deterministic policy gradient and long short-term memory, which takes the training loss of CNN models as its input and can output the adjustment on these three hyper parameters. Third, a new training method for ACNN is designed to enhance its stability. Two famous bearing datasets are selected to evaluate the performance of ACNN. It is compared with four commonly used HPO methods, namely, random search, Bayesian optimization, tree Parzen estimator, and sequential model-based algorithm configuration. ACNN is also compared with other published machine learning (ML) and deep learning (DL) methods. The results show that ACNN outperforms these HPO and ML/DL methods, validating its potential in fault diagnosis.

关键词: deep reinforcement learning     hyper parameter optimization     convolutional neural network     fault diagnosis    

Lifting installation and prestressed cable construction of suspendome roof for Wuhan Gymnasium

GUO Zhengxing, SHI Kairong, LUO Bin, TIAN Qiliang, WU Julong, BI Shuiyong

《结构与土木工程前沿(英文)》 2008年 第2卷 第1期   页码 87-92 doi: 10.1007/s11709-008-0005-y

摘要: The steel roof of Wuhan Gymnasium is a long-span suspendome structure system. According to the structural characteristics of the roof, the lifting installation of upper latticed shell and the installation and tension of lower prestressed cables are introduced in detail. The cable tension is completed successfully on June 27, 2006, while the test results of cable forces and structural deformation are comparatively consistent with the theoretical analysis results. Moreover, Strut-adjustment Method is innovated and applied successfully in the construction of long-span suspendome structure for the first time, and the theoretical and practical experiences can be used for the research and application of similar new-type spatial structures.

关键词: practical     new-type     installation     consistent     Gymnasium    

Seismic performance of prestressed concrete stand structure supporting retractable steel roof

Yiyi CHEN, Dazhao ZHANG, Weichen XUE, Wensheng LU

《结构与土木工程前沿(英文)》 2009年 第3卷 第2期   页码 117-124 doi: 10.1007/s11709-009-0024-3

摘要: The seismic behavior of a structural system composed of pre-stressed concrete stand supporting a retractable steel roof was studied, which is typically based on the prototype of engineering project of Shanghai Qizhong Tennis Center. By elasto-plastic finite element analysis and shaking table test, the following were investigated: the effects of roof configurations in opening and closing, the effect of pre-stress on the structural seismic response, and the failure mechanism of the spatial stand frame systems featured with circularly arranged columns and inverse-cone type stands. It was found that the roof status has great effect on the natural period, vibration modes, and seismic response of the whole structure, the stand response to horizontal seismic excitation is stronger in roof opening configuration than in closing state, and the response mode is dominantly translational rather than rotational, though the stand is characterized by its fundamentally torsional vibration mode. The study indicated that the pre-stressed inverse-cone stands can keep the system from global side-sway collapse under gravity loads, even in the case that most columns loose moment capacity.

关键词: retractable steel roof     prestressed concrete     seismic performance     failure mode     inelastic response     shaking table test    

3D fracture modelling and limit state analysis of prestressed composite concrete pipes

Pengfei HE, Yang SHEN, Yun GU, Pangyong SHEN

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 165-175 doi: 10.1007/s11709-018-0484-4

摘要: In this manuscript, we study fracture of prestressed cylindrical concrete pipes. Such concrete pipes play a major role in tunneling and underground engineering. The structure is modelled fully in 3D using three-dimensional continuum elements for the concrete structure which beam elements are employed to model the reinforcement. This allows the method to capture important phenomena compared to a pure shell model of concrete. A continuous approach to fracture is chosen when concrete is subjected to compressive loading while a combined continuous-discrete fracture method is employed in tension. The model is validated through comparisons with experimental data.

关键词: cylindrical concrete structures     limit state analysis     3D fracture modelling     prestressed composite pipes     reinforced concrete     three-point bending test    

Punching of reinforced concrete slab without shear reinforcement: Standard models and new proposal

Luisa PANI, Flavio STOCHINO

《结构与土木工程前沿(英文)》 2020年 第14卷 第5期   页码 1196-1214 doi: 10.1007/s11709-020-0662-z

摘要: Reinforced concrete (RC) slabs are characterized by reduced construction time, versatility, and easier space partitioning. Their structural behavior is not straightforward and, specifically, punching shear strength is a current research topic. In this study an experimental database of 113 RC slabs without shear reinforcement under punching loads was compiled using data available in the literature. A sensitivity analysis of the parameters involved in the punching shear strength assessment was conducted, which highlighted the importance of the flexural reinforcement that are not typically considered for punching shear strength. After a discussion of the current international standards, a new proposed model for punching shear strength and rotation of RC slabs without shear reinforcement was discussed. It was based on a simplified load-rotation curve and new failure criteria that takes into account the flexural reinforcement effects. This experimental database was used to validate the approaches of the current international standards as well as the new proposed model. The latter proved to be a potentially useful design tool.

关键词: punching shear strength     reinforced concrete     slabs     reinforcement ratio    

A numerical study of prestressed high strength steel tubular members

Michaela GKANTOU, Marios THEOFANOUS, Charalampos BANIOTOPOULOS

《结构与土木工程前沿(英文)》 2020年 第14卷 第1期   页码 10-22 doi: 10.1007/s11709-019-0547-1

摘要: The structural behavior of prestressed high strength steel (HSS) tubular members is investigated through the execution of advanced finite element modeling. Numerical models are developed and validated against published experimental data on HSS tubular members subjected to different levels of initial prestress and loaded either in tension or compression. The effect of the presence or absence of grouting on the strength and ductility of the members is also considered. To numerically replicate the structural response recorded in the tests, some key modeling features including the employed numerical solver, the adopted material models and the element types warrant careful consideration. Upon developing of the finite element models, the numerically generated ultimate loads, the corresponding failure modes and the full load-deformation curves are compared to the experimental ones, indicating a successful validation. As anticipated, prestressing enhances the load-bearing capacity for the tensile members, whereas it is detrimental for the compressive ones. A series of parametric studies is performed to assess the influence of key factors on the structural response of prestressed HSS members and the obtained results are discussed. Design guidance for tensile and compressive prestressed tubular members is also provided.

关键词: finite element     prestressing     tubular members     grout     high strength steel    

Analysis on shear capacity of prestressed concrete spatial connections

XUE Weichen, LIU Zhenyong, JIANG Dongsheng

《结构与土木工程前沿(英文)》 2008年 第2卷 第4期   页码 309-317 doi: 10.1007/s11709-008-0052-4

摘要: Based on experimental results of prestressed concrete spatial connections, nonlinear finite element models were established to analyze the shear capacity of spatial connections and parametric studies were performed using ANSYS. It is found that the shear capacity of spatial connection is influenced by joint hoop, beam prestress, column compressive load, and direction of resultant shear force. The parametric studies also indicate that the shear capacity of spatial connection under biaxial cyclic loading is lower than that of corresponding connections under plane loading. A design formula for calculating the shear capacity of spatial connections is proposed based on the parametric studies and verified by the available test results.

关键词: available     direction     nonlinear     capacity     compressive    

标题 作者 时间 类型 操作

Spatial embedded reinforcement of 20-node block element for analysis PC bridges

LONG Peiheng, DU Xianting, CHEN Weizhen

期刊论文

Flexural behavior of high-strength, steel-reinforced, and prestressed concrete beams

Qing JIANG, Hanqin WANG, Xun CHONG, Yulong FENG, Xianguo YE

期刊论文

Experimental research on the creep behavior and bearing capacity of repeatedly prestressed concrete beam

SHAO Xudong, LI Lifeng, YANG Jianjun

期刊论文

Deflection behavior of a prestressed concrete beam reinforced with carbon fibers at elevated temperatures

Mohammed FARUQI, Mohammed Sheroz KHAN

期刊论文

On the seismic stability analysis of reinforced rock slope and optimization of prestressed cables

Wenbo ZHENG, Xiaoying ZHUANG, Yongchang CAI

期刊论文

Seismic performance of fabricated continuous girder bridge with grouting sleeve-prestressed tendon composite

期刊论文

Experimental study on shear behavior of prestressed reactive powder concrete I-girders

Hui ZHENG, Zhi FANG, Bin CHEN

期刊论文

Calculation of prestressed anchor segment by 3D infinite element

Yanfen WANG, Hongyang XIE, Yuanhan WANG

期刊论文

A new automatic convolutional neural network based on deep reinforcement learning for fault diagnosis

期刊论文

Lifting installation and prestressed cable construction of suspendome roof for Wuhan Gymnasium

GUO Zhengxing, SHI Kairong, LUO Bin, TIAN Qiliang, WU Julong, BI Shuiyong

期刊论文

Seismic performance of prestressed concrete stand structure supporting retractable steel roof

Yiyi CHEN, Dazhao ZHANG, Weichen XUE, Wensheng LU

期刊论文

3D fracture modelling and limit state analysis of prestressed composite concrete pipes

Pengfei HE, Yang SHEN, Yun GU, Pangyong SHEN

期刊论文

Punching of reinforced concrete slab without shear reinforcement: Standard models and new proposal

Luisa PANI, Flavio STOCHINO

期刊论文

A numerical study of prestressed high strength steel tubular members

Michaela GKANTOU, Marios THEOFANOUS, Charalampos BANIOTOPOULOS

期刊论文

Analysis on shear capacity of prestressed concrete spatial connections

XUE Weichen, LIU Zhenyong, JIANG Dongsheng

期刊论文